Nucleophilic Displacements of \boldsymbol{N}-Aryl and Heteroaryl Groups. Part 6. The Rearrangement of 1-Aryl-5,6,7,8-tetrahydro-8-oximino-2,6-diphenylquinolinium Cations ${ }^{1}$

Alan R. Katritzky,* Wing Kai Yeung, Andrew J. Cozens, and Olga Rubio
Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
Antonio Saba
Istituto di Chimica, 07100 Sassari, Sardinia

1-Aryl-2-(benzyl- and neopentyl-carbamoyl) pyridinium salts (7) are rearranged by NaH at $110^{\circ} \mathrm{C}$ into the corresponding $2-(N$-aryl $-N$-substituted carbamoyl) pyridines (19). The 1 -aryl-5,6,7,8-tetrahydro8 -oximinoquinolinium salts (14) similarly give 8 -(arylhydroxyamino)-5,6-dihydroquinolines (17), preferring a five- to a six-membered transition state.

The conversion of primary arylamines into other functionalities has recently been achieved under relatively mild conditions ($110-150^{\circ} \mathrm{C}$), with mediation by pyrylium salts. ${ }^{2-4}$ In this way, phenols, ${ }^{2}$ diarylamines ${ }^{3}$ and aryl sulphides ${ }^{4}$ were prepared via intramolecular rearrangements of (1)-(3), respectively.
In a continuation of this work, we now report preparative and intramolecular aryl rearrangement studies carried out on N arylpyridinium salts containing a substituted carbamoyl group (7) or a hydrazidocarbonyl group (8) at the 2-position of the pyridinium ring, and on 8 -substituted 1 -aryl-5,6,7,8-tetrahydroquinolinium salts [cf. (10)].

Preparation of 1-Aryl-2-(N-substituted carbamoyl)- (7) and 2(Substituted hydrazidocarbonyl)-4,6-diphenylpyridinium Salts (8).-1-Aryl-2-ethoxycarbonyl-4,6-diphenylpyridinium tetrafluoroborates (4) were converted into the corresponding pyridinium acid chlorides (6) via the pyridinium betaines (5). ${ }^{3}$ The reaction of (6a) and (6b) with benzylamine and neopentylamine gave the 2-(N-substituted carbamoyl)-pyridinium salts (7a-d), and with hydrazines (at $\left.0^{\circ} \mathrm{C}\right)(6 \mathrm{a}-\mathrm{d})$ gave the 2-(substituted hydrazidocarbonyl)pyridinium salts (8a-g) (Table 1). A complex mixture was obtained from the reaction of methylhydrazine with ($\mathbf{6 b}$) in the usual way; however, if the acid chloride ($\mathbf{6 b}$) was added slowly to a dichloromethane solution of methylhydrazine, the expected product ($\mathbf{8 e}$) was isolated.

The pyridinium salts (7) and (8) show characteristic i.r. and n.m.r. spectra: $v(C=O)$ occurs at $1685 \mathrm{~cm}^{-1}$ in (7) and at 1680 cm^{-1} in (8). The ${ }^{1} \mathrm{H}$ n.m.r. spectra of the carbamoyl derivatives show in the range $\delta 3-4$ the benzylic methylene protons coupled with the NH proton ($J 6 \mathrm{~Hz}$). The hydrazido-carbonyl derivatives (8) show characteristic patterns ${ }^{3}$ of 2 -substituted 1 -aryl-4,6-diphenylpyridinium salts (Table 2).

Preparation of 8-Substituted 1-Aryl-5,6,7,8-tetrahydroquinolinium Cations.-The anhydro bases ($\mathbf{1 3 c}$ - f) were prepared as described previously ${ }^{5}$ from the quinolinium cations ($10 \mathrm{c}-\mathrm{f}$). The 8 -methylchromenylium compound (9 b$)^{6}$ gave successively the quinolinium salt (10 g) and anhydro base $(\mathbf{1 3 g})$. The anhydrobase (13c) reacted with phenacyl bromide and with ethyl bromoacetate to give the new quinolinium salts (11i) and (11h), respectively, and (13g) similarly gave (11j) (Scheme).
The chromenylium salt (9) readily gave the dimethylaminomethylene derivative (12r) by Reynolds and Van Allan's method; ${ }^{7}$ however, reaction of this with primary amines occurred with substitution of the NMe_{2} group to give ($\mathbf{1 2 r}-\mathrm{v}$), leaving the heterocyclic oxygen untouched ${ }^{8}$ (Table 3), instead of resulting in the expected pyridinium salts. This was shown by elemental analyses and confirmed by the ${ }^{1} \mathrm{H}$ n.m.r. spectra (Table 4).

(1)

(2)

(5)

(3)

(6)
$\ln (4)-(6) a, R=H ; \quad b, R=M e ; c, R=C l ; d, R=P h$

(7)

	R^{1}	R^{2}
a;	H	Ph
b;	Me	Ph
c;	H	Bu^{\dagger}
$\mathrm{d} ;$	Me	Bu^{t}

(8)

	R^{1}	R^{2}	R^{3}
a;	H	H	Ph
b;	Me	H	Ph
c;	Cl	H	Ph
d	Ph	H	Ph
e;	Me	H	Me
;	H	Me	Me
g;	Me	Me	Me

The anhydro base (13c) reacted with bromine to give the bromoquinolinium bromide (characterised as the perchlorate salt) (16) which underwent smooth solvolysis to the acetate (151), and hydrolysis to the hydroxy compound (15k).

The quinolinium oximes $(14 \mathrm{~m}-\mathrm{p})$ were obtained by the

(11)

(12)

(13)

(17)

(15)

	R ${ }^{1}$	R^{2}
a;	H	
b;	Me	
c;	H	p-Me
d;	H	H
e;	H	$p-\mathrm{Cl}$
f;	H	$p-\mathrm{Br}$
g;	Me	$p-\mathrm{Me}$
h;	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$
i;	H	$\mathrm{CH}_{2} \mathrm{COPh}$
j;	Me	$\mathrm{CH}_{2} \mathrm{COPh}$
k;	OH	

(16)

(14)
(18)

	\mathbf{R}^{1}	\mathbf{R}^{2}
I;	OAc	
m;		$p-\mathrm{Me}$
n;		H
o;		$p-\mathrm{Cl}$
p;		$p-\mathrm{Br}$
(;	Me	Me
r;	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	H
S;	$\mathrm{CH}_{2} \mathrm{Ph}$	H
t;	$m-\mathrm{MeC}_{6} \mathrm{H}_{4}$	H
u;	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H
\mathbf{v};	$\mathrm{Bu}^{\text {' }}$	H

Scheme.

reaction of nitrosyl chloride with the anhydro bases ($\mathbf{1 3 m}-\mathbf{p}$) in ether (Table 5). Since the oximes ($\mathbf{1 4 m}-\mathbf{p}$) were hygroscopic as chloride salts, they were converted into perchlorate salts. With the exception of (14n), these compounds crystallised with ethanol, as shown by the elemental analyses and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra (Tables 5, 6, and 11).

(19)

	R^{1}	R^{2}
a;	H	$P h$
b;	Me	Ph
c;	H	Bu^{t}
d;	Me	Bu^{t}

Intramolecular Rearrangement.-When 1-aryl-2-(N-substituted carbamoyl)pyridinium salts ($7 \mathrm{a}-\mathrm{d}$) were treated for 4 h with NaH in refluxing toluene, ${ }^{3} 2$ - N -substituted- N -arylcarba-moyl)-4,6-diphenylpyridines ($19 \mathrm{a}-\mathrm{b}$) were obtained in $c a .75 \%$ yield (Table 7). In their i.r. spectra, $v(C=O)$ appears at 1650 cm^{-1}. The ${ }^{1} \mathrm{H}$ n.m.r. spectra (Table 8) show a characteristic singlet in the region $\delta 4-5$ due to the methylene protons. However, attempts to rearrange the corresponding 2-(hydrazidocarbonyl)pyridinium salts were unsuccessful: only complex mixtures resulted when ($\mathbf{8} \mathbf{a}-\mathbf{g}$) were treated with NaH in either toluene or DMF. When the rearrangement was attempted in THF, the temperature was insufficient to induce the rearrangement. Reaction of 2-(Dimethylhydrazidocarbonyl)-4,6-diphenyl-1-(p-tolyl)pyridinium tetrafluoroborate $(\mathbf{8 g})$ with NaH in THF gave the pyrrolinone (21). Compound (21) was characterised spectroscopically. The i.r. spectrum shows $v(\mathrm{NH})$ at $3380 \mathrm{~cm}^{-1}$ and $v(\mathrm{C}=\mathrm{O})$ at $1680(\mathrm{PhCO})$ and $1650 \mathrm{~cm}^{-1}$ (NCO); the ${ }^{1} \mathrm{H}$ n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ shows an AB pattern (J 16 Hz) at $\delta 3.2$ and $\delta 4.7$ due to the gem- CH_{2} protons. The olefinic proton resonates at $\delta 6.5$ and the aromatic protons at δ 7.2-7.8. In the ${ }^{13} \mathrm{C}$ n.m.r. spectrum the carbonyl carbons resonate at $196.5(\mathrm{PhCO})$ and $164.8(\mathrm{NCO})$ p.p.m., the methine carbon at 66.9 p.p.m., the methylene carbon at 43.6 p.p.m., the methyl carbons at $44.5\left(\mathrm{NMe}_{2}\right)$ and 20.5 p.p.m. (4-Me), and the aromatic and olefinic carbons in the region 139-108 p.p.m. The formation of (21) involves hydroxide ion addition to the pyridinium ring during work-up, followed by ring-opening to (20) and ring-closure to give the product (21).

Attempts to induce rearrangement of 8 -substituted 1-aryl-5,6,7,8-tetrahydro-2,4-diphenylquinolinium salts (11h-k) failed: starting materials were recovered from the reaction of $(11 \mathrm{~h}-\mathrm{j})$ with NaH in solvents such as THF, toluene, DMF, and o-dichlorobenzene. The rearrangement of ($\mathbf{1 5 k}$) failed under basic conditions as decomposition occurred rapidly at pH 12 $\left(25^{\circ} \mathrm{C}\right.$), possibly due to $\mathrm{C}-\mathrm{C}$ bond fission, as found previously for 2-hydroxymethylpyridinium cations. ${ }^{9}$

However, the quinolinium oximes (14) rearranged on heating at $100^{\circ} \mathrm{C}$ with NaOEt and/or NaH in DMF for 6 h (Table 9). In the i.r. spectra of the rearrangement products (17) the expected $v(\mathrm{OH})$ was absent, probably owing to intramolecular hydrogen bonding with the heterocyclic nitrogen.

The ${ }^{1} \mathrm{H}$ n.m.r. spectra $(60,100 \mathrm{MHz})($ Table 10$)$ show an olefinic multiplet in the region $\delta 5.7-5.0$, together with multiplets due to the C-5 and C-6 methylene protons, in a $3: 1$ ratio. The 300 MHz spectrum of ($\mathbf{1 7 0}$) showed a $1: 2: 1$ ratio for the aliphatic protons, which could be assigned on irradiation of the signal due to $7-\mathrm{H}$ as follows: $\delta 3.2-3.0(6-\mathrm{H}), 2.9-2.6(5-\mathrm{H}$,

Table 1. Preparation of 1-aryl-2-(substituted carbamoyl or hydrazidocarbonyl)-4,6-diphenylpyridinium tetrafluoroborates (7) and (8)

				Found (\%) (Required)			
Compd.	Method ${ }^{\text {a }}$	Yield (\%)	$\text { M.p. }{ }^{b}$ $\left({ }^{\circ} \mathrm{C}\right)$	C	$\overbrace{\mathbf{H}}$	N	Formula
(7a)	A	60	222-224	$\begin{gathered} 70.0 \\ (70.4) \end{gathered}$	$\begin{gathered} 5.0 \\ (4.7) \end{gathered}$	$\begin{gathered} 5.1 \\ (5.3) \end{gathered}$	$\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}$
(7b)	A	61	210-211 ${ }^{\text {c }}$	$\begin{gathered} 71.0 \\ (70.8) \end{gathered}$	$\begin{gathered} 5.2 \\ (5.2) \end{gathered}$	$\begin{gathered} 5.1 \\ (5.4) \end{gathered}$	$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}$
(7c)	A	62	121-122	$\begin{gathered} 68.8 \\ (68.5) \end{gathered}$	$\begin{gathered} 5.2 \\ (5.7) \end{gathered}$	$\begin{gathered} 5.4 \\ (5.5) \end{gathered}$	$\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}$
(7d)	A	48	118-119	$\begin{gathered} 70.1 \\ (69.0) \end{gathered}$	$\begin{gathered} 5.7 \\ (5.9) \end{gathered}$	$\begin{gathered} 5.1 \\ (5.4) \end{gathered}$	$\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}$
(8a)	B	66	172-175	$\begin{gathered} 66.0 \\ (65.8) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.8) \end{gathered}$	$\begin{gathered} 7.6 \\ (7.7) \end{gathered}$	$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{BF}_{4} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$
(8b)	B	65	149-151	$\begin{gathered} 68.3 \\ (68.5) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.8) \end{gathered}$	$\begin{gathered} 7.7 \\ (7.7) \end{gathered}$	$\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{BF}_{4} \mathrm{~N}_{3} \mathrm{O}$
(8c)	B	68	220-222	$\begin{gathered} 63.5 \\ (63.9) \end{gathered}$	$\begin{gathered} 3.9 \\ (4.1) \end{gathered}$	$\begin{gathered} 7.2 \\ (7.5) \end{gathered}$	$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{BClF}_{4} \mathrm{~N}_{3} \mathrm{O}$
(8d)	B	73	276-280	$\begin{gathered} 71.0 \\ (71.4) \end{gathered}$	$\begin{gathered} 4.5 \\ (4.6) \end{gathered}$	$\begin{gathered} 6.6 \\ (6.9) \end{gathered}$	$\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{BF}_{4} \mathrm{~N}_{3} \mathrm{O}$
(8e)	C	70	185-187	$\begin{gathered} 65.1 \\ (64.9) \end{gathered}$	$\begin{gathered} 5.1 \\ (5.0) \end{gathered}$	$\begin{gathered} 8.5 \\ (8.7) \end{gathered}$	$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{BF}_{4} \mathrm{~N}_{3} \mathrm{O}$
(8f)	B	74	161-163	$\begin{gathered} 65.0 \\ (64.9) \end{gathered}$	$\begin{gathered} 5.2 \\ (5.0) \end{gathered}$	$\begin{gathered} 8.7 \\ (8.7) \end{gathered}$	$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{BF}_{4} \mathrm{~N}_{3} \mathrm{O}$
(8g)	B	75	142-145	$\begin{gathered} 62.8 \\ (63.2) \end{gathered}$	$\begin{gathered} 5.3 \\ (5.1) \end{gathered}$	$\begin{gathered} 7.9 \\ (8.2) \end{gathered}$	$\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{BF}_{4} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$

${ }^{a}$ See Experimental section. ${ }^{b}$ Obtained as needles from absolute EtOH. ${ }^{c}$ Needles from MeOH.

Table 2. ${ }^{1} \mathrm{H}$ N.m.r. spectra ${ }^{a}$ of 1-aryl-2-(substituted carbamoyl or hydrazidocarbonyl)-4,6-diphenylpyridinium tetrafluoroborates (7) and (8)

Compd.	$\begin{gathered} 3-\mathrm{CH} \\ (1 \mathrm{H}, \mathrm{~d}, J 2) \end{gathered}$	$\begin{gathered} 5-\mathrm{CH} \\ (1 \mathrm{H}, \mathrm{~d}, J 2) \end{gathered}$	Ar-H				N-H	Other-H		
			m	${ }_{\mathbf{H}}$	m	H		$\begin{gathered} \mathrm{NCH}_{2} \\ \left(2 \mathrm{H}, \mathrm{~d}, \mathrm{~J}_{6}\right) \end{gathered}$	Me (s)	
(7a)	7.90	7.80	7.6-6.8	18				2.50	4.30	
(7b)	8.00	7.80	$7.5-6.8$	17			2.00	4.30	$2.20{ }^{\text {b }}$	
(7c)	c	c	8.1-7.4	17			c	3.10	$0.70^{\text {d }}$	
(7d)	c	c	8.1-7.0	16			,	3.00	$2.30{ }^{\text {b }}, 0.70^{\text {d }}$	
(8a)	8.30	8.15	7.5-7.3	18	6.25	2	2.45			
(8b)	8.33	8.15	7.5-7.3	17	6.30	2	2.40		$2.24{ }^{\text {b }}$	
(8c)	8.25	8.18	7.5-7.3	17	6.30	2	2.40			
(8d)	8.31	8.20	7.6-7.3	22	6.30	2	2.45			
(8e)	8.35	8.15	7.5-7.2	14			2.48		$2.95{ }^{\text {b }}, 2.25^{\text {b }}$	
(8)	8.60	8.33	$7.9-7.3$	15			2.40		$3.17{ }^{\text {e }}$	
(8g)	8.60	8.33	7.9-7.3	14			2.40		$3.17^{e}, 2.29^{\text {b }}$	

${ }^{a}$ Solutions in $\mathrm{CDCl}_{3} ; \delta$ in p.p.m.; $J=$ coupling constant in $\mathrm{Hz} .{ }^{b} 3 \mathbf{H} .{ }^{c}$ In the aromatic region. ${ }^{d} 9 \mathrm{H} .{ }^{e} 6 \mathrm{H}$.

6-H), and $2.0-1.7(5-\mathrm{H})$. The ${ }^{13} \mathrm{C}$ n.m.r. spectra (Table 11) display triplets due C-5 and C-6 in the range $22-25$ p.p.m., a doublet assigned to C-7 at ca. 78 p.p.m. and a singlet assigned to C-8 at ca. 89 p.p.m. All the aromatic carbons resonate in the range $116-156$ p.p.m. In the mass spectra of (170) and (17p) the parent ions were observed, the base and major peaks resulted from the loss of $\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$.

When the rearrangement of $(\mathbf{1 4 m})$ was attempted using 2.5 3 equiv. of NaH , the yield of $(\mathbf{1 7 m})$ decreased to 10%. However, from the reaction mixture together with decomposition products a fully aromatised quinoline ($\mathbf{1 8 m}$) was isolated by column chromatography (neutral alumina, hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The quinoline $(18 \mathrm{~m})$ could be clearly identified by its mass spectrum, which showed the base peak at $m / z 386\left(M^{+}\right)$. Quinoline (18) could also be detected by t.l.c. (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane 80%), as the side-product of the reaction of (14) with 1 equiv. of base. The formation of this compound, together with the spectral data obtained for (17) help to confirm the proposed structures.

Experimental

M.p.s were obtained on a hot-stage apparatus, and are uncorrected. I.r. spectra utilised NaCl plates and a PerkinElmer 283B grating spectrophotometer (in CHBr_{3}). ${ }^{1} \mathrm{H}$ N.m.r. spectra were obtained on a Varian EM $360 \mathrm{~L}(60 \mathrm{MHz})$ and Nicolet NT-300 (300 MHz) spectrometers and ${ }^{13} \mathrm{C}$ n.m.r. spectra on JEOL JNM-FX100 (25.0 MHz) and Nicolet NT-300 (75.5 MHz) spectrometers. Mass spectra were recorded on an AEI MS 30 spectrometer.

The following compounds were prepared by literature methods: 2-ethoxycarbonyl-4,6-diphenylpyrylium tetrafluoroborate, m.p. $153-155^{\circ} \mathrm{C}$ (lit.. ${ }^{10}$ m.p. $155-157^{\circ} \mathrm{C}$); 1-phenyl(4a) m.p. $184-186^{\circ} \mathrm{C}$ (lit.,,11 m.p. 185- $186^{\circ} \mathrm{C}$); 1-(p-tolyl)(4b), m.p. 202- $203{ }^{\circ} \mathrm{C}$ (lit., ${ }^{3}$ m.p. $202-203{ }^{\circ} \mathrm{C}$); $1-(p$-chloro-phenyl)-(4c), m.p. $185-187^{\circ} \mathrm{C}$ (lit., ${ }^{3}$ m.p. $185-187^{\circ} \mathrm{C}$), and 1-biphenyl-4-yl-2-ethoxycarbonyl-4,6-diphenylpyridiniumtetrafluoroborate (4 d) $\left(90 \%\right.$), m.p. $182-184^{\circ} \mathrm{C}$ (from EtOH) (Found: $\mathrm{C}, 70.8 ; \mathrm{H}, 4.9 ; \mathrm{N}, 2.5 . \mathrm{C}_{32} \mathrm{H}_{26} \mathrm{BF}_{4} \mathrm{NO}_{2}$ requires $\mathrm{C}, 70.7$; $\mathrm{H}, 4.8 ; \mathrm{N}, 2.6 \%$); 1-phenyl-(5a), m.p. $150-151^{\circ} \mathrm{C}$ (lit., ${ }^{11}$ m.p.

Table 3. Preparation of $8-[(N$-substituted amino)methylene $]-5,6,7,8$-tetrahydrochromenylium trifluoromethanesulphonates (12)

				Found (\%) (Required)			
Compd.	Crystal form ${ }^{\text {a }}$	M.p. (${ }^{\circ} \mathrm{C}$)	Yield (\%)	C	H	N	Formula
(12q)	Needles ${ }^{\text {b }}$	189	81	$\begin{gathered} 61.0 \\ (61.1) \end{gathered}$	$\begin{gathered} 4.9 \\ (4.9) \end{gathered}$	$\begin{gathered} 2.9 \\ (2.9) \end{gathered}$	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$
(12r)	Prisms	278	83	$\begin{gathered} 65.2 \\ (65.1) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.7) \end{gathered}$	$\begin{gathered} 2.5 \\ (2.5) \end{gathered}$	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$
(12s)	Needles	215	89	$\begin{gathered} 65.1 \\ (65.1) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.7) \end{gathered}$	$\begin{gathered} 2.5 \\ (2.5) \end{gathered}$	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$
(12t)	Prisms	194	62	$\begin{gathered} 65.0 \\ (65.1) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.7) \end{gathered}$	$\begin{gathered} 2.5 \\ (2.5) \end{gathered}$	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$
(12u)	Prisms	295	51	$\begin{gathered} 60.5 \\ (60.7) \end{gathered}$	$\begin{gathered} 4.1 \\ (4.1) \end{gathered}$	$\begin{gathered} 2.4 \\ (2.4) \end{gathered}$	$\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{ClF}_{3} \mathrm{NO}_{4} \mathrm{~S}$
(12v)	Needles	194	87	$\begin{gathered} 62.5 \\ (62.4) \end{gathered}$	$\begin{gathered} 5.5 \\ (5.4) \end{gathered}$	$\begin{gathered} 2.7 \\ (2.7) \end{gathered}$	$\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$

${ }^{a}$ Ethanol as recrystallisation solvent. ${ }^{b} \mathrm{Ac}_{2} \mathrm{O}$ as recrystallisation solvent.

Table 4. ${ }^{1} \mathrm{H}$ N.m.r. spectra ${ }^{a}$ of 8-(N-substituted aminomethylene)-5,6,7,8-tetrahydrochromenylium trifluoromethanesulphonates (12)

Compd.	$\begin{gathered} 3-\mathrm{CH} \\ (1 \mathrm{H}, \mathrm{~s}) \end{gathered}$	Ar-H		Olefinic-H ($1 \mathrm{H}, \mathrm{s}$)	$\begin{aligned} & 5,7-\mathrm{CH}_{2} \\ & (4 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\begin{gathered} 6-\mathrm{CH}_{2} \\ (2 \mathrm{H}, \mathrm{~m}) \end{gathered}$	Me or CH_{2}	
		(m)	H				(s)	H
(12q)	8.17	8.0-7.2	10	6.95	3.0-2.5	2.0-1.5	3.50	6
(12r)	8.70	8.1-7.1	14	b	3.1-2.6	2.2-1.6	2.40	3
(12s)	8.20	7.8-7.2	15	7.05	3.0-2.4	2.2-1.6	4.83	2
(12t)	8.70	8.1-7.0	14	b	3.1-2.6	2.3-1.7	2.43	3
(12u)	8.65	8.1-7.0	14	b	3.2-2.4	2.3-1.6		
(12v)	8.40	7.8-7.1	10	6.97	2.9-2.3	$2.0-1.5$	1.53	9

${ }^{a}$ Solutions in $\mathrm{CDCl}_{3}-\mathrm{TFA} ; \delta$ in p.p.m. ${ }^{b}$ Signal embedded in the aromatic protons region.

Table 5. Preparation of 1 -aryl-5,6,7,8-tetrahydro-8-oximino-2,4-diphenylquinolinium perchlorates (14)
Found (\%)
(Required)

Compd.	Yield (\%)	M.p. $^{a}\left({ }^{\circ} \mathrm{C}\right)$	$\overbrace{\mathrm{C}}$	H	N
$(14 \mathrm{~m})$	59	$150-152$	65.6	5.6	5.4
			(65.4)	(5.7)	(5.1)
$(14 \mathrm{n})$	41	$149-152$	65.9	4.8	5.7
			(66.0)	(4.7)	(5.7)
(140)	60	$162-165$	60.8	4.9	4.7
			(60.9)	(4.9)	(4.9)
$(14 p)$	77	$160-163$	56.5	4.4	4.7
			(56.5)	(4.6)	(4.5)

Formula
$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{5}$
EtOH^{b}
$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{5}$
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}$
EtOH^{b}
$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{BrCln}_{2} \mathrm{O}_{5}$
EtOH^{b}

${ }^{a}$ All compounds recrystallised from EtOH as prisms. ${ }^{b}$ Confirmed by ${ }^{1} \mathrm{H}$ n.m.r. spectrum.

Table 6. ${ }^{1} \mathrm{H}$ N.m.r. spectra ${ }^{a}$ of 1-aryl-5,6,7,8-tetrahydro-8-oximino-2,4-diphenylquinolinium perchlorates (14)

Compd.	3-CH $(1 \mathrm{H}, \mathrm{s})$	$\overbrace{(\mathrm{m})}^{\mathrm{Ar}-\mathrm{H}} \quad \mathbf{H}$	$5,7-\mathrm{CH}_{2}(4 \mathrm{H}, \mathrm{m})$	6-CH2$(2 \mathrm{H}, \mathrm{m})$	Other-H $(3 \mathrm{H}, \mathrm{s})$	
$(\mathbf{1 4 m})$	7.75	$7.7-6.8$	14	$3.1-2.6$	$2.2-1.6$	2.23
$(\mathbf{1 4 n})^{b}$	7.70	$7.6-7.0$	15	$3.0-2.4$	$2.1-1.6$	
$(\mathbf{1 4 0})$	7.83	$7.7-7.1$	14	$3.1-2.4$	$2.2-1.7$	
$(\mathbf{1 4 p})$	8.05	$7.9-7.0$	14	$3.4-2.7$	$2.4-1.7$	

${ }^{a}$ Solution in $\mathrm{CDCl}_{3}-\mathrm{TFA} ; \delta$ in p.p.m. ${ }^{b}$ Solution in CDCl_{3}.
$150^{\circ} \mathrm{C}$); 1-(p-tolyl)-(5b), m.p. $162-163^{\circ} \mathrm{C}$ (lit., ${ }^{3}$ m.p. $162-$ $163^{\circ} \mathrm{C}$); 1-(p-chlorophenyl)-(5c) m.p. $146-148^{\circ} \mathrm{C}$ (lit., ${ }^{3}$ m.p. $146-148^{\circ} \mathrm{C}$); and 1-biphenyl-4-yl-4,6-diphenylpyridinium-2carboxylate (5 d) $\left(80 \%\right.$), m.p. $157-160^{\circ} \mathrm{C}$ (Found: C, $84.1 ; \mathrm{H}$, 4.7; $\mathrm{N}, 3.2 . \mathrm{C}_{30} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $\mathrm{C}, 84.3 ; \mathrm{H}, 4.9 ; \mathrm{N}, 3.3 \%$;

5,6,7,8-tetrahydro-2,4-diphenylchromenylium trifluoromethanesulphonate (9a), m.p. $185-187^{\circ} \mathrm{C}$ (lit., ${ }^{5} 187^{\circ} \mathrm{C}$); 5,6,7,8-tetrahydro-8-methyl-2,4-diphenylchromenylium trifluoromethanesulphonate (9b), m.p. $127-130^{\circ} \mathrm{C}$ (lit., ${ }^{6}$ m.p. $130-133{ }^{\circ} \mathrm{C}$); 1 -(p-tolyl)-(10c), m.p. $170-172{ }^{\circ} \mathrm{C}$ (lit., ${ }^{2}$ m.p. $171-173{ }^{\circ} \mathrm{C}$); $1-$

Table 7. Preparation of 2-(N-aryl- N-substituted carbamoyl)-4,6-diphenylpyridines (19)

Compd.	Yield (\%)	M.p. ${ }^{\text {a }}{ }^{\circ} \mathrm{C}$)	Found (\%) (Required)			Formula
			C	H	N	
$(19 a)^{\text {b }}$	74	162-163 ${ }^{\text {b }}$	84.1	5.7	6.1	$\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$
			$\begin{gathered} \text { (84.5) } \\ 84.3 \end{gathered}$	(5.5)	(6.4) 5.9	
(19b)	77	146-147	$\begin{gathered} 84.3 \\ (84.6) \end{gathered}$	$\begin{gathered} 5.6 \\ (5.7) \end{gathered}$	$\begin{gathered} 5.9 \\ (6.2) \end{gathered}$	$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$
(19c)	80	135-136	82.5	6.3	6.8	$\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$
			(82.9)	(6.7)	(6.7)	
(19d)	70	131-132	82.7	6.7	6.3	$\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$
			(82.9)	(6.9)	(6.5)	

${ }^{a}$ Plates from MeOH. ${ }^{b}$ Plates from absolute EtOH .

Table 8. ${ }^{1} \mathrm{H}$ N.m.r. spectra ${ }^{a}$ of 2-(N-aryl- N-substituted carbamoyl)-4,6-diphenylpyridines (19)

Compd.	$\begin{gathered} 3-\mathrm{CH} \\ (1 \mathrm{H}, \mathrm{~d}, J 2) \end{gathered}$	$\begin{gathered} 5-\mathrm{CH} \\ (1 \mathrm{H}, \mathrm{~d}, J 2) \end{gathered}$	Ar-H		Other-H		
						Me	
			(m)	H	$\begin{gathered} \mathrm{NCH}_{2} \\ (2 \mathrm{H}, \mathrm{~s}) \end{gathered}$	(s)	H
(19a)	7.90	7.70	7.6-6.9	20	5.15		
(19b)	7.80	7.70	$7.5-7.0$	19	5.15	2.20	3
(19c)	b	b	$7.8-7.1$	17	4.10	1.00	9
(19d)	b	b	$7.7-7.0$	16	4.00	2.20	3
						0.90	9

${ }^{a}$ Solutions in $\mathrm{CDCl}_{3} ; \delta$ in p.p.m.; $J=$ coupling constant in $\mathrm{Hz} .{ }^{b}$ With the other Ar-H.

Table 9. Preparation of 8-(N-aryl- N-hydroxyamino)-5,6-dihydro-2,4-diphenylquinolines (17)

Compd.$(17 \mathrm{~m})$	Yield (\%)	M.p. ${ }^{a}\left({ }^{\circ} \mathrm{C}\right)$	Found (\%) (Required)			Formula
			C	H	N	
	56	162-164	83.1	6.0	6.9	$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$
(17n)	36	260-262	(83.1) 82.9	(6.0) 5.7	(6.9) 7.2	$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$
			(83.0)	(5.7)	(7.2)	
(170)	58	282-284	76.1 (76.3)	5.0	6.6	$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}$
(17p)	46	274-276	(76.3) 69.0	(5.0) 4.6	(6.6) 6.0	$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{BrN}{ }_{2} \mathrm{O}$
			(69.1)	(4.5)	(6.0)	

${ }^{a}$ All compounds recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}$ as prisms.

Table 10. ${ }^{1} \mathrm{H}$ N.m.r. spectra ${ }^{a}$ of 8 -(N-aryl- N-hydroxyamino)-5,6-di-hydro-2,4-diphenylquinolines (17)

Compd.	Ar-H		$7-\mathrm{CH}$	5,6-CH2 CH_{2}	
	(m)	H	(1 H, m)	($3 \mathrm{H}, \mathrm{m}$)	($1 \mathrm{H}, \mathrm{m}$)
$(17 \mathrm{~m})^{\text {b }}$	8.0-6.5	15	5.3-4.9	3.4-2.5	2.1-1.5
(17n)	8.1-6.6	16	5.7-5.3	3.4-2.5	2.3-1.6
(170)	7.9-6.6	15	5.3-5.0	3.4-2.4 ${ }^{\text {c }}$	$2.2-1.6{ }^{\text {c }}$
(17p)	8.0-6.4	15	5.3-5.0	3.3-2.4	2.2-1.5

${ }^{a}$ Solutions in $\mathrm{CDCl}_{3}-\mathrm{TFA} ; \delta$ in p.p.m. ${ }^{\boldsymbol{b}}$ Solution in CDCl_{3}; Me (2.16, $3 \mathrm{H}, \mathrm{s}) .{ }^{\mathrm{c}} 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r.: $\delta 3.2-3.0(1 \mathrm{H}, \mathrm{m}), 2.9-2.6(2 \mathrm{H}, \mathrm{m})$, and $2.0-1.7(1 \mathrm{H}, \mathrm{m})$.
phenyl-(10d), m.p. 204-206 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{2}$ m.p. $203-205^{\circ} \mathrm{C}$); 1-(p -chlorophenyl)-(10e), m.p. 147-148 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{2}$ m.p. $146-148^{\circ} \mathrm{C}$), and 1 -(p-bromophenyl)-5,6,7,8-tetrahydro-2,4-diphenylquinolinium trifluoromethanesulphonate (10f), m.p. $158-159^{\circ} \mathrm{C}$ (lit., ${ }^{2}$ m.p. $156-158{ }^{\circ} \mathrm{C}$); 1 -(p-tolyl)-(13c), m.p. $131-133^{\circ} \mathrm{C}$
(lit., ${ }^{2}$ m.p. $130-132{ }^{\circ} \mathrm{C}$); 1-phenyl-(13d), m.p. $109-110^{\circ} \mathrm{C}$ (lit., ${ }^{2}$ m.p. $110-112^{\circ} \mathrm{C}$); $1-\left(p\right.$-chlorophenyl)-(13e), m.p. $149-150^{\circ} \mathrm{C}$ (lit., ${ }^{2}$ m.p. $146-148^{\circ} \mathrm{C}$); and $1-(p$-bromophenyl)-1,5,6,7-tetra-hydro-2,4-diphenylquinoline (13f), m.p. $125-126^{\circ} \mathrm{C}$ (lit., ${ }^{2}$ m.p. $125-127^{\circ} \mathrm{C}$).

Preparation of 1-Aryl-2-(N-substituted carbamoyl)-(7) and 1Aryl 2-(substituted hydrazidocarbonyl)-4,6-diphenylpyridinium Tetrafluoroborate (8).-Method A. Thionyl chloride (18 mmol), 1-aryl-4,6-diphenylpyridinium-2-carboxylate (4) (6 mmol), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ were refluxed for 2 h . The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and an excess of thionyl chloride were removed under reduced pressure ($50^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$). To the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added the amine (18 mmol) and the mixture was refluxed for 3 h . The solution was evaporated $\left(50^{\circ} \mathrm{C} / 20 \mathrm{mmHg}\right)$ and the residue washed successively with water (50 ml) and $\mathrm{Et}_{2} \mathrm{O}$ (50 ml). The resultant gum was dissolved in ethanol (15 ml) and tetrafluoroboric acid ($40 \%, 10 \mathrm{mmol}$) added to form, after cooling, the carbamoyl tetrafluoroborate (7) (Table 1).

Table 11. ${ }^{13} \mathrm{C}$ N.m.r. chemical shifts ${ }^{a}$ of 1-aryl-5,6,7,8-tetrahydro-8-oximino-2,4-diphenylquinolinium perchlorates (14) and 8-(N-aryl- N -hydroxyamino)-5,6-dihydro-2,4-diphenylquinolines (17).

Compd.	Aromatic-C	C-5 (t)	C-6 (t)	C-7	C-8 (s)	Me (q)
$(\mathbf{1 4 m})^{b}$	$157.8-127.6$	24.3	19.5	$27.5(\mathrm{t})$	146.5	19.5
$(\mathbf{1 4 n})^{b}$	$157.8-128.0$	24.2	19.4	$27.6(\mathrm{t})$	146.7	
$(\mathbf{1 4 0})^{b}$	$158.6-128.5$	24.4	19.4	$27.6(\mathrm{t})$	146.3	
$(\mathbf{1 4 p})^{b}$	$159.2-124.4$	24.6	19.7	$27.8(\mathrm{t})$	146.3	
$(\mathbf{1 7 m})^{c}$	$154.6-116.3$	24.8	22.9	$78.9(\mathrm{~d})$	89.1	20.6
$\left(\mathbf{1 7 0}{ }^{\text {c }}\right.$	$154.5-118.0$	24.5	22.4	$77.8(\mathrm{~d})$	88.9	
$(\mathbf{1 7 p})^{\text {c }}$	$156.4-117.8$	24.5	22.4	$77.8(\mathrm{~d})$	88.9	

${ }^{a}$ In $\mathrm{CDCl}_{3}-$ TFA, with CDCl_{3} (77.0 p.p.m.) as reference. ${ }^{b}$ Assignments of $\mathrm{C}-5$ and $\mathrm{C}-7$ could be interchanged. Assignment of $\mathrm{C}-8$ was based on the low intensity of this signal. ${ }^{c}$ Assignments of C-5 and C-6 could be interchanged.

Method B. The substituted hydrazine (18 mmol) was added to the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as in Method A , and the mixture stirred at $0^{\circ} \mathrm{C}$ for 1 h ; work-up as above gave the hydrazidocarbonyl salts ($\mathbf{8 a}-\mathbf{d}, \mathbf{f}$, and \mathbf{g}) (Table 1).
Method C. The residue (6 b) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added dropwise over 1 h to a stirred solution at $0^{\circ} \mathrm{C}$ of methylhydrazine (18 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$; work-up as above gave (8e) (Table 1).

1,5,6,7-Tetrahydro-8-methyl-2,4-diphenyl-1-(p-tolyl)quinoline (13g).-5,6,7,8-Tetrahydro-8-methyl-2,4-diphenylchromenylium trifluoromethanesulphonate (9b) $(6.6 \mathrm{~g}, 14.5 \mathrm{mmol})$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$, p-toluidine ($1.6 \mathrm{~g}, 14.5 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{~g}$, 14.5 mmol) were refluxed for 1 h ; $\mathrm{AcOH}(1.7 \mathrm{~g}, 29 \mathrm{mmol})$ was added and the solution washed with water ($2 \times 25 \mathrm{ml}$), dried (MgSO_{4}), and evaporated at $50^{\circ} \mathrm{C} / 5 \mathrm{mmHg}$. The resultant gum was triturated with $\mathrm{Et}_{2} \mathrm{O}$ to give the crude triflate salt (10g) $(5.1 \mathrm{~g}, 65 \%)$. To a stirred ethanol solution (20 ml) of crude 5,6,7,8-tetrahydro-8-methyl-2,4-diphenyl-1-(p-tolyl)quinolinium triflate $(10 \mathrm{~g})(1.3 \mathrm{~g}, 2.4 \mathrm{mmol})$ was added $\mathrm{NaH}(97 \%, 0.12$ $\mathrm{g}, 4.8 \mathrm{mmol}$). The title compound precipitated out after 15 min , and was filtered off and washed with $\mathrm{H}_{2} \mathrm{O}$ to yield $0.6 \mathrm{~g}(65 \%)$ as prisms, m.p. $143^{\circ} \mathrm{C}$ (Found: C, 89.3; H, 7.0; N, 3.5. $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}$ requires C, $89.4 ; \mathrm{H}, 7.0 ; \mathrm{N}, 3.6 \%) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.8-6.6(14 \mathrm{H}, \mathrm{m})$, $6.46(1 \mathrm{H}, \mathrm{s}), 2.13(3 \mathrm{H}, \mathrm{s}), 1.93(3 \mathrm{H}, \mathrm{s})$, and $2.7-1.4(6 \mathrm{H}, \mathrm{m})$; $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1600 \mathrm{~s}, 1500 \mathrm{~s}, 1440 \mathrm{~s}, 1230 \mathrm{~s}, 800 \mathrm{~s}$, and 760s. The corresponding perchlorate salt was obtained by addition of $\mathrm{HClO}_{4}(60 \%)$ to an ethanolic solution of (13g) as prisms (90%), m.p. $184^{\circ} \mathrm{C}$ (Found: C, $71.0 ; \mathrm{H}, 5.9$; N, 2.8. $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{ClNO}_{4}$ requires C, $71.1 ; \mathrm{H}, 5.8 ; \mathrm{N}, 2.9 \%) ; \delta\left(\mathrm{CDCl}_{3}\right) 8.0-6.8(15 \mathrm{H}, \mathrm{m})$, 3.5-2.6 (3 H, m), $2.26(3 \mathrm{H}, \mathrm{s}), 2.2-1.4(4 \mathrm{H}, \mathrm{m})$, and $1.13(3 \mathrm{H}$, $\mathrm{d}, J 7 \mathrm{~Hz}) ; v_{\text {max }}\left(\mathrm{CHBr}_{3}\right) 1610 \mathrm{~s}, 1600 \mathrm{~s}$, and 1080 b .

8-(Ethoxycarbonylmethyl)-5,6,7,8-tetrahydro-2,4-diphenyl-1-

 (p-tolyl)quinolinium Perchlorate (11h).-1,5,6,7-Tetrahydro-2,4-diphenyl-1-(p-tolyl)quinoline (13c) $(1 \mathrm{~g}, 2.7 \mathrm{mmol})$, $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}(0.7 \mathrm{~g}, 4.0 \mathrm{mmol})$, and THF (10 ml) were refluxed for $5 \mathrm{~min} . \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ was added and the resulting precipitate collected and dissolved in $\mathrm{EtOH}(10 \mathrm{ml})$. Addition of HClO_{4} $(60 \% ; 1 \mathrm{ml})$ gave the perchlorate which, after washing with water $(20 \mathrm{ml})$ formed needles $(1.0 \mathrm{~g}, 67 \%)$, m.p. $209^{\circ} \mathrm{C}$ (Found: C, 68.4; $\mathrm{H}, 5.8 ; \mathrm{N}, 2.5 . \mathrm{C}_{32} \mathrm{H}_{32} \mathrm{ClNO}_{6}$ requires $\mathrm{C}, 68.4 ; \mathrm{H}, 5.8 ; \mathrm{N}, 2.5 \%$); $\delta\left(\mathrm{CDCl}_{3}\right) 7.9-6.7(15 \mathrm{H}, \mathrm{m}), 3.86(2 \mathrm{H}, \mathrm{q}, J 6 \mathrm{~Hz}), 3.8-3.5(1 \mathrm{H}$, $\mathrm{m}), 3.2-2.6(4 \mathrm{H}, \mathrm{m}), 2.23(3 \mathrm{H}, \mathrm{s}), 2.2-1.4(2 \mathrm{H}, \mathrm{m})$, and $1.06(3$ $\mathrm{H}, \mathrm{t}, J 6$); $v_{\text {max }} .\left(\mathrm{CHBr}_{3}\right) 1730 \mathrm{~s}, 1610 \mathrm{~s}$, and 1080 br .5,6,7,8-Tetrahydro-8-phenacyl-2,4-diphenyl-1-(p-tolyl)quinolinium Perchlorate (11i). This compound was prepared similarly (with $\mathrm{BrCH}_{2} \mathrm{COPh}^{2}$ as the nucleophile) as prisms (73%), m.p. $224{ }^{\circ} \mathrm{C}$ (Found: C, 72.6; H, 5.4; N, 2.3. $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{ClNO}_{5}$ requires C, $72.8 ; \mathrm{H}, 5.4 ; \mathrm{N}, 2.4 \%) ; \delta\left(\mathrm{CDCl}_{3}-\mathrm{TFA}\right) 8.0-6.5(20 \mathrm{H}, \mathrm{m})$,
4.3-3.9 (1 H, m), 3.6-3.2 (2 H, m), 3.2-2.7 (4 H, m), 2.4-1.6 ($2 \mathrm{H}, \mathrm{m}$), and $2.20(3 \mathrm{H}, \mathrm{s}) ; \mathrm{v}_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1670 \mathrm{~s}, 1600 \mathrm{~s}$, and 1080 br .

5,6,7,8-Tetrahydro-8-methyl-8-phenacyl-2,4-diphenyl-1-(ptolyl)quinolinium Perchlorate (11j).-1,5,6,7-Tetrahydro-8-methyl-2,4-diphenyl-1-(p-tolyl)quinoline (13g) $\quad(0.5 \mathrm{~g}, \quad 1.3$ $\mathrm{mmol}), \mathrm{BrCH}_{2} \mathrm{COPh}(0.38 \mathrm{~g}, 1.9 \mathrm{mmol})$, and THF $(10 \mathrm{ml})$ were refluxed for $5 \mathrm{~h} ; \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ was added and the precipitate collected. The work-up procedure described above gave the title compound as prisms ($0.55 \mathrm{~g}, 70 \%$), m.p. $141^{\circ} \mathrm{C}$ (Found: C, 72.8; $\mathrm{H}, 5.7 ; \mathrm{N}, 2.3 . \mathrm{C}_{37} \mathrm{H}_{34} \mathrm{ClNO}_{5}$ requires $\mathrm{C}, 73.1 ; \mathrm{H}, 5.7 ; \mathrm{N}, 2.3 \%$); δ $\left(\mathrm{CDCl}_{3}-\mathrm{TFA}\right) 8.0-6.2(20 \mathrm{H}, \mathrm{m}), 3.7-1.0(8 \mathrm{H}, \mathrm{m}), 2.20(3 \mathrm{H}$, $\mathrm{s})$, and $1.70(3 \mathrm{H}, \mathrm{s}) ; v_{\text {max. }} .\left(\mathrm{CHBr}_{3}\right) 1670 \mathrm{~s}, 1610 \mathrm{~s}$, and 1080 br .

8-Bromo-5,6,7,8-tetrahydro-2,4-diphenyl-1-(p-tolyl)quinolinium Perchlorate (16).-To a stirred solution of 1,5,6,7-tetrahydro-2,4-diphenyl-1-(p-tolyl)quinoline (13c) ($2 \mathrm{~g}, 5.3$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(400 \mathrm{ml})$ was added dropwise excess Br_{2} until the solution turned yellow. The yellow precipitate was filtered off dissolved in $\mathrm{EtOH}(10 \mathrm{ml})$ and $\mathrm{HClO}_{4}(60 \% ; 2 \mathrm{ml})$ added to the solution. The title compound precipitated and was filtered off and washed with water (20 ml) ($2.4 \mathrm{~g}, 81 \%$), prisms, m.p. $176{ }^{\circ} \mathrm{C}$ (Found: C, 60.7; H, 4.6; N, 2.5. $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{BrClNO}_{4}$ requires C, 60.6; H, 4.6; N, 2.5\%); $\delta\left(\mathrm{CDCl}_{3}\right.$-TFA) 8.1-6.9 (15 H, m), 5.20 $(1 \mathrm{H}, \mathrm{m}), 3.4-2.9(4 \mathrm{H}, \mathrm{m}), 2.7-1.7(2 \mathrm{H}, \mathrm{m})$, and $2.30(3 \mathrm{H}, \mathrm{s})$; $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1610$ s and 1080 br .

8-Acetoxy-5,6,7,8-tetrahydro-2,4-diphenyl-1-(p-tolyl)-quinolinium Perchlorate (15l).- $\mathrm{NaOAc}(0.14 \mathrm{~g}, 1.7 \mathrm{mmol})$ was added to8-bromo-5,6,7,8-tetrahydro-2,4-diphenyl-1-(p-tolyl)quinolinium bromide (16) $(0.5 \mathrm{~g}, 1.1 \mathrm{mmol})$ in $\mathrm{AcOH}(10 \mathrm{ml})$. The mixture was refluxed for 1 h and $\mathrm{HClO}_{4}(60 \%, 0.5 \mathrm{ml})$ was added, followed by water $(10 \mathrm{ml})$. The precipitate was filtered off, washed with water (10 ml), and recrystallised from PhMe$\mathrm{Et}_{2} \mathrm{O}$ to give the title compound as prisms ($0.35 \mathrm{~g}, 60 \%$), m.p. $145{ }^{\circ} \mathrm{C}$ (Found: C, 67.5; H, 5.3; N, 2.6. $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{ClNO}_{6}$ requires $\mathrm{C}, 67.5 ; \mathrm{H}, 5.3 ; \mathrm{N}, 2.6 \%) ; \delta\left(\mathrm{CDCl}_{3}\right) 8.0-7.0(15 \mathrm{H}, \mathrm{m}), 5.93(1 \mathrm{H}$, $\mathrm{m}), 3.3-2.8(4 \mathrm{H}, \mathrm{m}), 2.6-1.5(2 \mathrm{H}, \mathrm{m}), 2.26(3 \mathrm{H}, \mathrm{s})$, and 1.86 $(3 \mathrm{H}, \mathrm{s}) ; v_{\text {max }} .\left(\mathrm{CHBr}_{3}\right) 1735 \mathrm{~s}, 1610 \mathrm{~s}$, and 1080 br .

8-Hydroxy-5,6,7,8-tetrahydro-2,4-diphenyl-1-(p-tolyl)quinolinium Tetrafluoroborate (15k).-8-Bromo-5,6,7,8-tetra-hydro-2,4-diphenyl-1-(p-tolyl)quinolinium bromide (16) (0.5 g , 1.1 mmol) was refluxed in water (50 ml) for 24 h after which $\mathrm{HBF}_{4}(40 \%, 0.8 \mathrm{ml})$ was added. The precipitate was filtered off, washed with water (10 ml), and recrystallised from $\mathrm{PhMe}-$ $\mathrm{Et}_{2} \mathrm{O}$ to give the title compound as prisms ($0.39 \mathrm{~g}, 74 \%$), m.p. $135^{\circ} \mathrm{C}$ (decomp.) (Found: C, 70.1; H, 5.5; N, 2.9. $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{BF}_{4} \mathrm{NO}$ requires C, $\left.70.2 ; \mathrm{H}, 5.5 ; \mathrm{N}, 2.9 \%\right) ; \delta\left(\mathrm{CDCl}_{3}\right)$ $7.8-6.8(15 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}, \mathrm{m}), 3.2-2.6(4 \mathrm{H}, \mathrm{m}), 2.5-1.4(2$
$\mathrm{H}, \mathrm{m})$, and $2.23(3 \mathrm{H}, \mathrm{s})$; $\mathrm{v}_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3500 \mathrm{br}, 1615 \mathrm{~s}$, and 1050 br .

8-[(N,N-Dimethylamino)methylene $]-5,6,7,8-$ tetrahydro-2,4diphenylchromenylium Trifluoromethanesulphonate (12a).-5,6,7,8-Tetrahydro-2,4-diphenylchromenylium trifluoromethanesulphonate $(9 \mathrm{a})(1 \mathrm{~g}, 2.3 \mathrm{mmol})$ was refluxed in a mixture of DMF (0.6 ml) and $\mathrm{Ac}_{2} \mathrm{O}(4 \mathrm{ml})$ for 15 min . $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ was then added and the precipitate filtered off to give the title compound; this was recrystallised from $\mathrm{Ac}_{2} \mathrm{O}$ to give needles $\left(0.9 \mathrm{~g}, 81 \%\right.$), m.p. $189{ }^{\circ} \mathrm{C}$ (Found: C, 61.0; H, 4.9; N, 2.9. $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 61.1 ; \mathrm{H}, 4.9 ; \mathrm{N}, 2.9 \%$); $\delta\left(\mathrm{CDCl}_{3}{ }^{-}\right.$ TFA) 8.17 ($1 \mathrm{H}, \mathrm{s}$), 8.0-7.2 ($10 \mathrm{H}, \mathrm{m}$), $6.95(1 \mathrm{H}, \mathrm{s}), 3.50(6 \mathrm{H}, \mathrm{s})$, and $3.0-1.5(6 \mathrm{H}, \mathrm{m}) ; \mathrm{v}_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1615 \mathrm{~s}, 1250 \mathrm{~s}$, and 1020 m .

5,6,7,8-Tetrahydro-2,4-diphenyl-8-[(N-substituted amino)methylene]chromenylium Triftuoromethanesulphonates (12r\mathbf{v}).-To a solution of the 8 -(dimethylamino)methylene compound $(12 \mathrm{~g})(1 \mathrm{~g}, 2.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added the corresponding amine (1 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ (1 equiv.). The mixture was stirred at $20^{\circ} \mathrm{C}$ for $8-24 \mathrm{~h}$ after which $\mathrm{AcOH}(1.5$ equiv.) was added. The solvent was removed ($80^{\circ} \mathrm{C} / 5 \mathrm{mmHg}$) to leave a dark brown residue which when triturated with $\mathrm{Et}_{2} \mathrm{O}(10$ $\mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ and recrystallised from EtOH gave the chromenylium salt.

Preparation of the Quinolinium Oximes (14).—Into a stirred solution of 1-aryl-1,5,6,7-tetrahydro-2,4-diphenylquinoline (13) $(1 \mathrm{~g})$ in $\mathrm{Et}_{2} \mathrm{O}(100-150 \mathrm{ml})$ was bubbled NOCl gas (generated from NaNO_{2} and HCl) until the red colour completely disappeared. The resulting yellow precipitate was filtered off and dissolved in a minimum of EtOH ; addition of NaClO_{4} ($50 \%, 1.3 \mathrm{ml}$) gave the quinolinium oxime which precipitated on stirring (Table 5).

2-(N -Aryl- N -substituted carbamoyl)-4,6-diphenylpyridines (19a-d).-Sodium hydride $(97 \%, 0.15 \mathrm{~g}, 6 \mathrm{mmol})$ was added to the 1-aryl-2-(N-substituted carbamoyl)-4,6-diphenylpyridinium tetrafluoroborate (7) (3 mmol) in toluene (15 ml), and the mixture refluxed for 4 h . The solvent was removed $\left(60^{\circ} \mathrm{C} / 10\right.$ mmHg) and the resulting solid washed with water (50 ml), filtered off, and recrystallised (Table 7).

5-Benzoylmethyl-1-(N, N-dimethylamino)-5-phenyl-3-(p-tol-ylamino)-5H-pyrrol-2(1H)-one (21).-2-(N, N-Dimethyl-hydrazidocarbonyl)-4,6-diphenyl-1-(p-tolyl)pyridinium tetrafluoroborate $(8 \mathrm{~g})(0.5 \mathrm{~g}, 1 \mathrm{mmol})$ and sodium hydride $(97 \%$; $0.050 \mathrm{~g}, 2 \mathrm{mmol}$) were refluxed in THF (10 ml) for 4 h . The solvent was then removed $\left(50^{\circ} \mathrm{C} / 10 \mathrm{mmHg}\right)$ and the resultant solid washed with water (20 ml), filtered off $(0.35 \mathrm{~g}, 73 \%)$, and recrystallised from MeCN to give prisms; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.9-7.2$ $(14 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}, \mathrm{AB}, J 16 \mathrm{~Hz}), 3.2(1 \mathrm{H}, \mathrm{AB}, J 16 \mathrm{~Hz}), 2.75(6$ H, s), and $2.22(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 196.5(\mathrm{~s}), 164.8(\mathrm{~s}), 139-108(\mathrm{Ar}-\mathrm{C}$ $+C=), 66.9(\mathrm{~s}), 44.5(\mathrm{q}), 43.6(\mathrm{t})$, and $20.5(\mathrm{q}) ; v_{\text {max. }} .\left(\mathrm{CHBr}_{3}\right)$ $3380 \mathrm{~s}, 1680 \mathrm{~s}$, and 1650 s .

Preparation of 8-[Aryl(hydroxy)amino]-5,6-dihydro-2,4-diphenylquinolines ($\mathbf{1 7 m}$-p).-Method A. $\mathrm{NaH}(97 \% ; 2.1 \mathrm{mmol})$ was added to the quinolinium oxime (14) (2.0 mmol) in DMF $(20 \mathrm{ml})$ and the mixture heated at $100^{\circ} \mathrm{C}$ for 6 h . Removal of the solvent $60^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$) gave a brown residue which was washed with water (50 ml) and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$, and the resultant solid recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}$ to give the corresponding title compound ($\mathbf{1 7 m}-p)$ (Table 9).

Method B. Reaction of ($\mathbf{1 4 m}$) ($1 \mathbf{g}, 1.8 \mathrm{mmol}$) with $\mathrm{NaH}(97 \%$; $0.13 \mathrm{~g}, 5.25 \mathrm{mmol}$) under the above conditions gave ($\mathbf{1 7 m}$) (75 $\mathrm{mg}, 10 \%$). The ethereal extracts ($2 \times 25 \mathrm{ml}$) were dried $\left(\mathrm{MgSO}_{4}\right)$, ether was removed ($25^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$), and the brown residue passed through a column (neutral alumina, hexane$\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 2,4-diphenyl-8-p-tolylaminequinoline ($\mathbf{1 8 m}$) $(110 \mathrm{mg}, 16 \%)$ yellow needles $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}\right)$, m.p. $131-$ $132{ }^{\circ} \mathrm{C}$ (Found: C, 86.7; H, 5.8; N, 7.1. $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2}$ requires C, $87.1 ; \mathrm{H}, 5.7 ; \mathrm{N}, 7.3 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.70(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.6-8.3(2$ $\mathrm{H}, \mathrm{m}) 8.10(1 \mathrm{H}, \mathrm{s})$, $7.9-7.3(17 \mathrm{H}, \mathrm{m})$, and $2.40(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$ $\left(\mathrm{CDCl}_{3} ; 75.5 \mathrm{MHz}\right) 153.4$ (s), 149.3 (s), 141.3 (s), 139.4 (s), 139.3 (s), 138.8 (s), 138.4 (s), 131.9 (d), 129.8 (d), 129.5 (d), 129.1 (d), 128.7 (d), 128.4 (d), 128.2 (d), 127.3 (d), 127.0 (d), 126.2 (s), 121.0 (d), 119.5 (d), 113.9 (d), 107.3 (d), and $20.8(q) ; v_{\text {max }}\left(\mathrm{CHBr}_{3}\right)$. 3340 w and 1570 m ,br. High resolution m.s. (M^{+}): Found, m / z 386.1786; Calc. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2}: m / z, 386.1783$.

Acknowledgments

We thank the National Science Foundation for a grant for Nicolet NT-300 spectrometer (at the University of Florida).

References

1 For previous work cf. A. R. Katritzky, Tetrahedron, 1980, 36, 679.
2 A. R. Katritzky, R. T. Langthorne, H. Muathin, and R. C. Patel, J. Chem. Soc., Perkin Trans. 1, 1983, 2601.
3 A. R. Katritzky and A. J. Cozens, J. Chem. Soc., Perkin Trans. 1, 1983, 2611.
4 A. R. Katritzky and R. T. Langthorne, J. Chem. Soc., Perkin Trans. 1, 1983, 2605.
5 A. R. Katritzky, L. Urögdi, and R. C. Patel, J. Chem. Soc., Perkin Trans. 1, 1982, 1349.
6 A. R. Katritzky and R. Awartani, Tetrahedron, 1982, 38, 2505.
7 G. A. Reynolds and J. A. VanAllan, J. Org. Chem., 1969, 34, 2736.
8 a For related systems see: M. M. Evstifeev, G. N. Dorofeenko, E. P. Olekhnovich, and G. Kh. Aminova, J. Gen. Chem. USSR Eng Transl., 1976, 46, 1315 ; M. M. Evstifeev, G. Kh. Aminova, E. P. Olekhnovich, G. N. Dorofeenko, V. P. Karmazin, and M. I. Knyazhanskii, J. Gen. Chem. USSR Engl. Transl., 1976, 46, 2572. b For a related reaction see G. N. Dorofeenko, V. V. Mezheritskii, and A. L. Vasserman, Chem. Heterocycl. Compd. USSR Engl. Trans., 1974, 101166.
9 S. Golding and A. R. Katritzky, Can. J. Chem., 1965, 43, 1250.
10 A. R. Katritzky, A. Chermprapai, R. C. Patel, and A. TarragaTomas, J. Org. Chem., 1982, 47, 492.
11 A. R. Katritzky, R. Awartani, and R. C. Patel, J. Org. Chem., 1982, 47, 498.

